m-Wielandt series in infinite groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups of Prime Power Order as Frobenius-wielandt Complements

It is known that the Sylow subgroups of a Frobenius complement are cyclic or generalized quaternion. In this paper it is shown that there are no restrictions at all on the structure of the Sylow subgroups of the FrobeniusWielandt complements that appear in the well-known Wielandt's generalization of Frobenius' Theorem. Some examples of explicit constructions are also given. 0. Introduction Let ...

متن کامل

A Problem of Wielandt on Finite Permutation Groups

Problem 6.6 in the Kourovka Notebook [9], posed by H. Wielandt, reads as follows. ' Let P, Q be permutation representations of a finite group G with the same character. Suppose P(G) is a primitive permutation group. Is Q{G) necessarily primitive? Equivalently: Let A, B be subgroups of a finite group G such that for each class C of conjugate elements of G their intersection with C has the same c...

متن کامل

A relation between infinite subsets and exterior center in groups

Let G be a group. Neumann to answer a question of Paul Erdos proved that every infinite subset of G has two different comuting elements  if and only if G is center-by-finite. In this paper, we deal with Erdoschr('39')s question in different aspect and we show that every infinite subset X of G has two different elements x and y such that x^y=1  if and only if the exterior  center of G ihas finit...

متن کامل

Topics in Infinite Groups

Preface These are lecture notes for a course taught in Cambridge during Lent 2014 by Jack Button, on a topics in infinite group theory. There are likely to be errors, which are solely the fault of the scribe. If you discover any, please contact me [email protected].

متن کامل

Infinite Groups

Most interesting groups arise as a group of transformations. For example the set of “rigid motions” of 2-dimensional space R forms a group denoted Isom(R). There are three kinds of transformations: reflection about a line, rotation about a point, and translation in a direction. These form a group under composition (i.e., do one transformation and then do the other). For example, the composition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 2001

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788700002299